rtmp:
# Optional: Enable the RTMP stream (default: True)
enabled: True
record:
enabled: True
# Optional: Number of seconds before the event to include (default: shown below)
retain:
days: 7
events:
pre_capture: 5
# Optional: Number of seconds after the event to include (default: shown below)
post_capture: 5
retain:
default: 14
snapshots:
enabled: True
objects:
track:
- person
- dog
go2rtc:
streams:
Rue_high:
- rtsp://xxxxxxxxxxxx@192.168.0.103:554/h264Preview_01_main
Rue_low:
- rtsp://xxxxxxxxxxxx@192.168.0.103:554/h264Preview_01_sub
Salon_high:
- rtsp://xxxxxxxxxxxx@192.168.0.105:554/h264Preview_01_main
Salon_low:
- rtsp://xxxxxxxxxxxx@192.168.0.105:554/h264Preview_01_sub
webrtc:
candidates:
- 192.168.0.47:8555
- stun:8555
cameras:
Rue:
ffmpeg:
inputs:
- path: rtsp://127.0.0.1:8554/Rue_high # <--- the name here must match the name of the camera in restream
roles:
- record
- rtmp
- path: rtsp://127.0.0.1:8554/Rue_low # <--- the name here must match the name of the camera in restream
roles:
- detect
live:
stream_name: Rue_high
height: 1296
quality: 30
detect:
enabled: true # <---- disable detection until you have a working camera feed
width: 2560 # <---- update for your camera's resolution
height: 1440 # <---- update for your camera's resolution
fps: 25
Salon:
ffmpeg:
inputs:
- path: rtsp://127.0.0.1:8554/Salon_high # <--- the name here must match the name of the camera in restream
roles:
- record
- path: rtsp://127.0.0.1:8554/Salon_low #<--- the name here must match the name of the camera in restream
roles:
- detect
- rtmp
motion:
mask:
- 1525,347,1617,363,1701,471,1492,564,1370,466
live:
stream_name: Salon_high
height: 1440
quality: 20
detect:
enabled: true # <---- disable detection until you have a working camera feed
width: 1920 # <---- update for your camera's resolution
height: 1080 # <---- update for your camera's resolution
fps: 25
# Include all cameras by default in Birdseye view
detectors:
coral:
type: edgetpu
device: pci
birdseye:
enabled: True
mode: continuous
j’ai aussi pour ma part très peu de sollicitation de la clé et du CPU
par contre je n’ai pas du tout les même cameras ( moins bonne résolution )
ce qui expliquerait que chacune de tes cameras solliciteraient plus le CPU
a voir si tu n’as pas de flux basse résolution a donner a FRIGATE
d’autre part tu as bien fait un container LXC dédié a FRIGATE, comme recommandé par la documentation. et pas utilisé l’intégration native de HA ?ou encore une VM dedié?
Je viens de faire une LXC tout ce passe bien mais il ne trouve pas le coral alors qu’il est bien installé
dans mon fichier config il faut que je mette quoi pour le coral ?? pci ca à pas l’air de passer
Lit en détail l’article en français
Tu as exposé la définition du container lxc
C’est la dedans que tu vas faire le lien entre ton périphérique M2 et ton container
2023-12-21 13:15:49.566160601 [2023-12-21 13:15:49] frigate.detectors.plugins.edgetpu_tfl INFO : Attempting to load TPU as pci
2023-12-21 13:15:49.566395846 [2023-12-21 13:15:49] frigate.detectors.plugins.edgetpu_tfl ERROR : No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors.
2023-12-21 13:15:49.566765718 Process detector:coral:
tu ne dit pas de bêtises mas ca ne fonctionne pas chez moi
3-12-21 13:36:46.078505862 [2023-12-21 13:36:46] frigate.detectors.plugins.edgetpu_tfl INFO : Attempting to load TPU as pci:0
2023-12-21 13:36:46.078788101 [2023-12-21 13:36:46] frigate.detectors.plugins.edgetpu_tfl ERROR : No EdgeTPU was detected. If you do not have a Coral device yet, you must configure CPU detectors.
2023-12-21 13:36:46.078961090 Process detector:coral:
2023-12-21 13:36:46.080205513 Traceback (most recent call last):
2023-12-21 13:36:46.080377888 File "/usr/lib/python3/dist-packages/tflite_runtime/interpreter.py", line 160, in load_delegate
2023-12-21 13:36:46.080379961 delegate = Delegate(library, options)
2023-12-21 13:36:46.080507944 File "/usr/lib/python3/dist-packages/tflite_runtime/interpreter.py", line 119, in __init__
2023-12-21 13:36:46.080509680 raise ValueError(capture.message)
2023-12-21 13:36:46.080632982 ValueError
2023-12-21 13:36:46.080728508
2023-12-21 13:36:46.080745954 During handling of the above exception, another exception occurred:
2023-12-21 13:36:46.080747070
2023-12-21 13:36:46.080830269 Traceback (most recent call last):
2023-12-21 13:36:46.080936454 File "/usr/lib/python3.9/multiprocessing/process.py", line 315, in _bootstrap
2023-12-21 13:36:46.080937962 self.run()
2023-12-21 13:36:46.081024221 File "/usr/lib/python3.9/multiprocessing/process.py", line 108, in run
2023-12-21 13:36:46.081025754 self._target(*self._args, **self._kwargs)
2023-12-21 13:36:46.081116269 File "/opt/frigate/frigate/object_detection.py", line 98, in run_detector
2023-12-21 13:36:46.081117927 object_detector = LocalObjectDetector(detector_config=detector_config)
2023-12-21 13:36:46.081197363 File "/opt/frigate/frigate/object_detection.py", line 52, in __init__
2023-12-21 13:36:46.081198893 self.detect_api = create_detector(detector_config)
2023-12-21 13:36:46.081289264 File "/opt/frigate/frigate/detectors/__init__.py", line 24, in create_detector
2023-12-21 13:36:46.081290700 return api(detector_config)
2023-12-21 13:36:46.081368467 File "/opt/frigate/frigate/detectors/plugins/edgetpu_tfl.py", line 37, in __init__
2023-12-21 13:36:46.081370084 edge_tpu_delegate = load_delegate("libedgetpu.so.1.0", device_config)
2023-12-21 13:36:46.081461560 File "/usr/lib/python3/dist-packages/tflite_runtime/interpreter.py", line 162, in load_delegate
2023-12-21 13:36:46.081463196 raise ValueError('Failed to load delegate from {}\n{}'.format(
2023-12-21 13:36:46.081578132 ValueError: Failed to load delegate from libedgetpu.so.1.0
Oui le Coral n’est utilisé que pour reconnaitre les objets.
Avant cela il y a la partie décodage vidéo réalisé par le CPU et le GPU si présent et une première détection de mouvement très simplifié (un peu comme avant)